cea irfm

The edge E_r well in L-mode plasmas: Experiments & gyrokinetic simulations

Y. Sarazin¹, G. Dif-Pradalier¹, P. Donnel¹,
X. Garbet^{1,2}, Ph. Ghendrih¹, V. Grandgirard¹,
P. Hennequin³, Y. Munschy¹, K. Obrejan¹, O. Panico¹,
S. Rienäcker³, R. Varennes², L. Vermare³

- ¹ CEA, IRFM Cadarache, France
- ² NTU, Singapore
- ³ Ecole Polytechnique, Palaiseau, France

EU-US TTF workshop, Nancy, 2023-09-12

Motivation – Outline

2

Y. Sarazin

Heuristic dynamical equation on $\langle E_r \rangle$ [Varennes 2023] $\partial_t \langle \mathcal{P} \rangle$ GYSELA • Poisson equation \rightarrow **exact** dynamical equation for $-\langle J_r \rangle$ polarization field at small $k_{\parallel}\rho_i$ [Parra 2009, Abiteboul 2011] $Z_0 n_0 V_{T0}$] $\frac{\partial}{\partial t} \sum_{s} \varepsilon_{pol,s} \left(E_r - \frac{1}{2e_s N_s} \frac{\mathrm{d}P_{\perp,s}}{\mathrm{d}r} \right) = -\sum_{s} J_{r,s}$ Radial currer Radial current density -1 Polarization (electric & magnetic drifts) Permittivity = $\frac{N_s m_s}{R^2}$ $\frac{\partial P_{\perp,s}}{\partial t}$ governed by heat eq. 0.2 0.4 0.6 0.8 1.0 r/a

• Leads to a heuristic equation for $\langle V_{E\theta} \rangle = -\langle E_r \rangle / B \rightarrow$ in banana regime $\nu_* = \frac{\nu_{ii}qR}{\nu_{r-c^{3/2}}} \ll 1$:

Heuristic prediction for $\langle v_{E\theta} \rangle$ – some evidence in experiments

Prediction at equilibrium: balance between turbulence & collisions

 $\langle V_{E\theta} \rangle = V_{E\theta,neo} - \frac{\nabla_r \langle \Pi_{r\theta} \rangle}{\nu_{neo}}$

Fair agreement in the core

Important role of turbulence at staircase locations

- Experiments yield contradictory information in core [Bell 1998, Crombé 2005, Grierson 2013] & edge [Viezzer 2014, Plank 2023]
- Radial force balance (with V_{θ,neo}) not always sufficient to recover experimental measurement of E_r
- Other mechanisms than turb. possibly at play in edge:
 - Orbit squeezing [Shaing 1992, Kagan 2009, Landreman 2010]
 - Ion orbit losses [De Grassie 2011, Chang 2017, Brzozowski 2019]

Turbulent RS not only electric \rightarrow diamagnetic component Π^*

• Exp. evidence: something missing beyond $\Pi \rightarrow \Pi^*$? [Gerrú 2019]

Csq: Pressure is NOT simply advected by ExB flow

• Indeed:
$$\partial_t p_{\perp} + \mathbf{u}_E \cdot \nabla p_{\perp} = 0 \Rightarrow \langle \Pi^* \rangle / \langle \Pi \rangle < 0$$

• Drift ITG: $\hat{p}_{\perp k,\omega} = -\left\langle \frac{\omega^* - \omega_d - k_{\parallel} v_{\parallel}}{\omega - \omega_d - k_{\parallel} v_{\parallel}} \ \mu B \ F_M \right\rangle_v \hat{\phi}_{k,\omega}$

Panico

Poster TTF

• Can be captured in reduced transport models

Core-edge GK simulations with immersed boundary \rightarrow plasma-wall interaction

• Modified quasi-neutrality condition for r/a>1 with Boltzmann electrons**: Enforced plasma-wall // condition $\rightarrow \delta n_e/n_e = e\phi/T_e - \Lambda$

**Ongoing work to include kinetic electrons [Munschy 2023]

Steep gradients associated to sheared E_r

- Steep gradients in the vicinity of the separatrix @ r/a=1
 - Localized poloidally

[Dif-Pradalier 2022]

Vm

electric field [in

Radial

Y. Sarazin

Radial electric field E_r

- Negative in core (r/a<1) → radial force balance
- Positive in SOL (r/a>1) \rightarrow plasmawall interaction physics
- Well at the edge $r \approx a \rightarrow strong shear$

Build up of E_r well dynamically resolved

Dynamics of toroidally averaged radial vorticity (shear of E_r):

• "Transfer Entropy" \rightarrow causality (directional net flow of information):

[Schreiber 2000, Van Milligen 2014, Nicolau 2018, Dif-Pradalier 2021]

- E_r well born at limiter poloidal location
- **Diamagnetic** Reynolds force dominant initially
- Poloidal entrainment ensures poloidal homogenization
- Electric Reynolds force dominant downstream & at later time

[Dif-Pradalier 2022]

Incidence of plasma current I_p on confinement... and E_r

- **Confinement improves with plasma current I**p [Goldston 1984,
 - $\rightarrow \textbf{Turbulence intensity I}_{turb} \text{ increases with } \textbf{q} \sim 1/\textbf{I}_{p}$ at constant ρ_{*}, ν_{*}, β
- Possible explanations:
 - Growth rate increases with q
 - Threshold ~ s/q [Fourment 2003]
 - Change in wave nb spectrum [Ottaviani 1997, Dannert 2005]
 - Effect of GAMs
- Experimentally: edge E_r well less deep when q increases
 - L-mode (WEST data)
 - H-mode low density branch
 - \rightarrow How does it compare to heuristic prediction?

[Vermare 2022]

0.9

0.95

 ho_{pol}

[Ryter 2014, Bilato 2020, Plank 2023]

[Waltz 1995]

[Angelino 2006]

[Vermare 2022]

Rienäcker

Poster TTF

-6

0.85

$q \sim 1/I_p$ dependence of E_r well \rightarrow different dependence on q of turb. drive & neo. viscosity

- **E**_r well less deep when increasing **q**
 - Qualitatively consistent with experiments
 - Not observed w/o turbulence (neo. only)
 - Although turbulent intensity \uparrow with q
- Present understanding: $\langle V_{E\theta} \rangle = V_{E\theta,neo} \frac{\nabla_r \langle \Pi_{r\theta} \rangle}{U}$
 - + $V_{E\theta,neo}$ almost independent of q
 - v_{neo} scales like q²
 - $\nabla_r \langle \Pi_{r\theta} \rangle$ scales like q^{α} with α <2 (turb. heat flux ~ q^{1.3})
 - \Rightarrow Balance between turbulence drive (Reynolds stresses) and neoclassical viscosity

[Gianakon 2002]

Safety factor

 $a_{0.5}, a_{95} = 1.8$

<u>ce</u>z

Conclusions

- Shear of E_r regulates turbulence
- E_r well at the edge
 - Deepens when H-mode transport barrier
 - Sometimes inconsistent with neoclassical prediction
 - \rightarrow Points towards turbulence, ion orbit losses, ...
- Heuristic E_r prediction from balance between turb. drive Π_{turb} & coll. Viscosity v_{neo}
- Turbulence drive = electric + diamagnetic Reynolds stresses (in phase in ITG turb.)
- Diamagnetic Reynolds stress key to the build-up of E_r well at limiter
- Experimental q-dependence of edge E_r well qualitatively recovered with GYSELA: different dependence on q of Π_{turb} and v_{neo}
- **Next** : impact of kinetic electrons & of the nature of turbulence ITG/TEM?

Back up slides

$q_{ref} \times 0.5$ $e^{-\Phi_{00} \text{ at time = 72000.0/}\omega_c}$ Electrostatic potential fluctuations

Time evolution of E_r

-0.02