

0 0 0

U. Plank, C. Angioni, G. D. Conway, T. Happel, A. Kappatou, T. Pütterich, P. A. Schneider, R. M. McDermott, and the ASDEX Upgrade Team

0

0 0 0 0 0 0 0 0 0 0 0 0

MAX-PLANCK-INSTITUT FOR PLASMA PHYSICS | ULRIKE PLANK

[5] U. Plank NF 2020 [6] L. Schmitz NF 2022

Motivation

Fusion power plant:

- DT operation, He as fusion product
- Influence of main ion composition on access into and sustainment of H-mode?

Present-day devices:

- In pure H P_{IH} is 2x higher than in pure D [1,2]
- In pure He: $1 1.4 \times P_{H}(D)$ [3]
- In D+H: non-linear dependence of P_{IH} on relative hydrogen content [4,5]
- Impact of He admixture in H unclear [4,5,6]

[1] E. Righi NF 1999 [2] F. Ryter NF 2013 [3] ITER report 2018 [4] J. Hillesheim IAEA FEC 2018

AUG

Figure from [2]

2

L-H Transition: Underlying Physics Mechanism

Global:

Multi-machine scaling P_{scal} for D plasmas [1]

 $P_{\rm scal} = 0.049 \, n_e^{0.72} B_t^{0.8} S^{0.94}$

Local:

 Edge turbulence suppression by ExB shear flow leads to L-H transition [2]

$$E_r = \frac{\nabla(p_i)}{eZ_i n_i} + (\boldsymbol{v}_i \times \boldsymbol{B})_r$$

Critical edge ion heat (Q_{i,edge}) flux at L-H transition [3]
→ connects global P_{LH} with local edge E_r

→ Characterization of global and local edge quantities at the L-H transition in H+D and H+He plasmas at AUG

[1] Y Martin J. Phys. Conf. 2008 [2] H. Biglari PoP 1990 [3] F. Ryter NF 2014 [4] F. Ryter PPCF 2016

Figure from [4]

Overview

- Experiment design
- L-H transition in H-D plasmas [1]:
 - Power threshold and edge ion heat flux
 - Radial electric field and ion heat diffusivity
 - H-L back transition
- L-H transition in H-He plasmas [2]:
 - Power threshold and edge ion heat flux
- Summary & conclusions

[1] U. Plank PPCF 2023 [2] U. Plank NF 2020

ASDEX Upgrade

Experiment Design

- LSN with $I_p=0.8MA$, $B_t=-2.5T$ in fav. drift
- L-H transitions with ECRH or NBI
- Target density: 4x10¹⁹ m⁻³ (density minimum)
- Feed forward D/H/He gas puffs
- P_{LH} := P_{net} at L-H transition
- $P_{\text{net}} = P_{\text{aux}} P_{\text{aux,loss}} dW/dt$
- Main chamber radiation losses measured by bolometry [1] are small

Diagnostics and Analysis Methods

- Relative hydrogen with NPA [1], He content via CXRS [2]
- Edge E_r via Doppler reflectometry (DR) [3, 4] and He II spectroscopy (HES) [5]
- IDA for T_i, T_e, n_e [6, 7]
- Power balance (Q_i, Q_e) with ASTRA and RABBIT/Torbeam [8, 9,10]

[1] Bartiromo RSI 1987 [2] A. Kapppatou PPCF 2018 [3] G.D. Conway PPCF 2004 [4] T. Happel PoP 2015 [5] U. Plank PhD in prep. for RSI 2023 [6] E. Viezzer RSI 2012 [7] R. Fischer Fus. Sci. Techn. 2010 [8] G.V. Pereverzev IPP-Report 5/98 [9] M. Weiland NF 2018 [10] E. Poli Comp. Phys. Comm. 2000

EU-US TTF 15.09.2023. NANCY

Non-linear Dependence of P_{LH} & Q_{i,edge} on Relative Hydrogen Content

• P_{LH} starts to increase from D to H level at $n_H/(n_H+n_D) \sim 0.6$

ASDEX Upgrade

Non-linear Dependence of P_{LH} & Q_{i,edge} on Relative Hydrogen Content

- P_{LH} starts to increase from D to H level at $n_H/(n_H+n_D) \sim 0.6$
- Different to JET results

ASDEX Upgrade

Non-linear Dependence of P_{LH} & Q_{i,edge} on Relative Hydrogen Content

- P_{LH} starts to increase from D to H level at $n_H/(n_H+n_D) \sim 0.6$
- Q_{i,edge} follows this trend

ASDEX Upgrade

E_r gradients at L-H transition Similar in Pure D and H Plasmas

- E_{r,min} and E_r gradients the same in D and H (in line with [1])
- E_{r,min} can be used as proxy for its gradients in these L-mode conditions [2,3]
- Diamagnetic term ($\nabla_r p_i/en_i$) is a good proxy for the edge E_r in these L-mode conditions [2,3]

^[1] M. Cavedon NF 2020 [2] U. Plank PoP 2023 [3] U. Plank PPCF 2023

E_{r,min} Constant at the L-H Transition

• $E_{r,min} \sim -11 \text{ kV/m}$ (in line with [1]) \rightarrow same E_r gradients for different $n_H/(n_H+n_D)$

[1] M. Cavedon NF 2020

Ion Heat Transport Increases with Relative Hydrogen Content

[1] N. Bonanomi PoP 2021 [2] E. Belli PRL 2020 [3] P. Schneider PPCF 2021 [4] C. Maggi NF 2019 [5] G. Birkenmeier PPCF 2023

Same Non-linear Dependence of H-L Back Transition on Relative Hydrogen Content as L-H Transition

 Small hysteresis of P_{LH} and P_{HL} if higher plasma density at H-L is taken into account

E_{r,min} the Same at L-H and H-L Back Transition

No hysteresis in E_{r,min}

No Reduction of P_{LH} in H with up to 20% He Admixture [1]

- At high H level:
 - No reduction of P_{LH} by He doping
 - Influence of heating method on P_{LH} , but not on $\mathsf{Q}_{i,\mathsf{edge}}$
 - → Same critical Q_{i,edge} has to be established to enter H-mode
- For P_{LH}: same trends at DIII-D [2], but not at JET [3]

15

SDEX

Reduction of P_{LH} only when He is Dominant Ion Species

When P_{LH} is low, heating method has no influence

16

[1] Y Martin J. Phys. Conf. 2008

Reduction of P_{LH} only when He is Dominant Ion Species

- When P_{LH} is low, heating method has no influence
- No change if density variation (via P_{scal} [1]) is taken into account
- As known, P_{scal} overestimates experimental P_{LH} close to density minimum & in W-wall machines

Summary and Conclusions

D+H

- Non-linear dependence of P_{LH} and Q_{i,edge} on relative hydrogen fraction
- P_{LH}, which yields the required E_r gradients, increases since ion heat diffusivity increases with H fraction in L-mode
- Similar E_r gradients found at L-H and H-L back transition → no hysteresis in edge quantities

H+He:

- P_{LH} decreases from H to He (~D) level once He is dominant ion species
- Importance of Q_{i,edge} for L-H transition confirmed

18