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=P7L  Understanding and controlling the ramp upis
crucial to tokamak operation

= Work done within EUROfusion TSVV11 activities

= Focus on validation of integrated modelling
« Comparison against non-linear gyrokinetic simulations
« Comparison against experiments

= Ramp up is a critical phase:
* Need to minimize magnetic flux consumption while avoiding MHD instabilities
* 1;, Visopand By need to be controlled at the same time
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=PFL  Numerous challenges need to be overcome for
successful modelling of the ramp up

= Specific conditions: high T, /T;, high q, high collisionality, high R/L,, (TCV)

= Numerous physics processes are important (neutral source, sawteeth,
turbulence, neoclassical transport etc)

= Large uncertainties on the simulation settings
« Uncertainties about initial conditions (particularly current profile)
« Uncertainties about boundary conditions

= State of the art is the simultaneous prediction of j, T,, T;
[Fable PPCF 2013, Maget PPCF 2022, Ho NF 2023]

= The predictive channels interact nonlinearly

o = Aim IS to use the same settings for multiple discharges
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=P7L  Well diagnosed TCV shot was

chosen as reference #64965 LMA] 008 032
K [—] 1.0 1.5
= TCV, Ohmic, L-mode plasma ol=1 0 0.2
.. . . Ne line ave 2.0 5.5
= Limited (diverted after the modelled interval) [1019]
= With electron (Thomson Scattering) and ion (CXRS)  Zesr[-] 1.27 1.2
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=PFL  Quasilinear and non-linear gyrokinetic
are In qualitative agreement

Long wavelengths stable
Fair agreement with quasilinear estimates [Y. Camenen, this conference]

TEM dominated (R/L,, driven) despite of collisionality, especially in the early phase,
then transitioning to a hybrid TEM-ITG

ETG at short wavelength, stabilized when s/q increases
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E PFL M d III [ | Romanell? M Plasma Fusion Res 2014
odelling as se .cons|stent an Romanelli Jetto Manual 1988
Houlberg W.A. Phys. Plasmas 1997
Challis C.D. Nucl. Fusion 1989
m ] u Eriksson L.GNucl. Fusion .1993
pre I Ive as pGSSI e Lauro-Taroni L. Controlled Fusion and
Plasma Physics
Tamor S. J. Comput. Phys 1981

Self consistently predict j, T,, T;, n,, n¢

= HFPS, IMAS compatible, equilibrium predicted by ESCO, neutral source by
FRANTIC, impurities by SANCO, turbulent transport with QuaLiKiz and TGLF,
neoclassical transport with NCLASS

= Boundary shape evolving in time are imposed and extracted by the
experimental reconstruction of LIUQE

= Line averaged density from experiment and feedback controlled
= Boundaries at p = 0.99 for T,, T;, n,, n,

= Impurity puff constant in time set to roughly match the experimentally
measured n,

o = Hollow initial q profile, limit setto T; /T, < 3
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=PrL

Comparison with the experiment
shows fair agreement

the first HRTS measurement
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Sawteeth

=PFL  Comparison with the experiment

—— Inversion radius Exp
shows fair agreement 0.4 1 — Inversion radius Model
0.3 1 WNI
= Simulation started at t = 0.034[s], simultaneous with ~ |
the first HRTS measurement S 02+
= Inversion radius for modelling calculate as g = 1.1 .
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= Agreement lower for t < 0.1, but generally good .
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=PFL Comparison with the kinetic profiles shows good

agreement

= Good agreement is
reached on all channels

= Slightly higher T,, T;
predicted by TGLF
(SAT2, no ExB), but n,
generally closer to
experiment

= T; Is systematically
underpredicted

= Scatter in n, data (due
to miscalibration or
misalignment) make
comparison more
difficult
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=F*L  Fair agreement was obtained during early phase )

= Early phase proved to be T.att= 0.067 Tiatt=0.068
more Cha”eng|ng : ?;EIF_iKiz ::::: : ?;EIF_lKlz
* |nitial conditions more *H | HRTS Experimental data b CXRS Experimental data
important ] } }|1 } o
= Q
- Larger errorbars for ¢ ! 2 oy
CXRS ~ 0.4 0.15
0.2 *}||'+ S 0.054
y b
- QuaLIKIZ predICtS T T T T 0.00(.’;.0 0.|2 0:4 0.|6 O.IB 1.0
transition from TEM to ITG- | ' Dol | | ol
TEM, especially at inner N Ne at t = 0.067 Nc att = 0.068
rad“ . —— QualiKiz 0.035 - —— QualiKiz
4.0 1 ml —— TGLF —— TGLF
35 4 | H | t  HRTS Experimental data 0.030 - }  CXRS Experimental data
= Agreement improves after & | | } | E
the onset of Sawteeth 2 20 = NN
B Swiss 05 4 X 0.005 -
Plasma : . . . . ‘ . .
Center 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

pl-] pl-]



=PFL A metric was developed to quantify the agreement

d

= Agreement is generally ~15%
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£PFL Multiple discharges and valiables are compared simultaneously *
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=P~L Multiple discharges and variables are compared simultaneously “

Te

M Swiss

Extensive sensitivities
were run to explore
robustness of settings
and physics

Allows identification of
Important parameters

The same settings lead
to good agreement
over multiple
discharges

Pipeline is in place to
Include an arbitrary
number of discharges
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=PFL  Conclusions *

= Multiple TCV ramp-up phases have been reproduced with integrated
modelling

= Good agreement with the experimental data was obtained, both on
global quantities and profiles evolution

= There Is broad agreement between the turbulence predicted by
guasilinear and higher fidelity models

* R/L,, driven TEM dominated plasmas, then transitioning to ITG-TEM
* Q./Q; > 1, especially in early ramp-up phase

= An extensive sensitivity on physical and boundary conditions was
performed

= A pipeline leveraging the IDS has been built to enable a larger scale
validation exercise
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=P7L Backup slides

= Power balance

= Turbulence plots

= Turbulence at rho =0.9

= Figure of merit with experiments
= Early TGLF

= Comparison only QuaLiKiz

= Loc soc?
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=P*L " Power balance qualitatively agrees with ’
standalone nonlinear analysis

— it vol I
= At the beginning of the Sources per unit volume ntegrated sources

discharge Q; is small

= Competition between ohmic
power, ionization and
charge exchange
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=P*L " Power balance qualitatively agrees with
standalone nonlinear analysis

= At the beginning of the Sources per unit volume

discharge Q; is small

= Competition between ohmic
power, ionization and
charge exchange

= Later Q;~0Q,

t =0.17
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=PFL Volume “

weighted
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=PrlL Expenmentally

weighted

= Takes error-bars Into
account

axis
=d =) p= sep

flt d
p

Oexp

= Part of the disagreement
IS due to the poor quality
of the experimental data

(Ti, nc)

model
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=PrL
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More
sensitivities

High Prad not being
Important shows
stiffness of the
profiles

Agreement is
Improved consistently
with internal boundary
conditions

ETG is not very
important

Even this simple
relative distance iIs
skewed to the
boundaries
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=PFL Turbulence from QualiKizatp = 0.5

21

= TEM unstable during the early phase, then transitioning to ITG-TEM

= Subdominant

modes present but
very discontinuous

= ETG is unstable,
but does not drive

significant fluxes (in

Integrated
modelling)
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=P'L " Turbulence from QualiKizatp = 0.7 "

= TEM unstable during the early phase, then transitioning to ITG-TEM

= Subdominant w>0TEM  w<0:ITG
modes present but

very discontinuous

= ETG iIs unstable,
but does not drive
significant fluxes (in
Integrated
modelling)

= TEM remains
dominant at p = 0.7

= Show Qe/Qi from
QualiKiz
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=PFL  Specific settings

= Limit Ti/Te < 3
= |nitial g profile hollow

= |nitial Zeff at 1.5, lower close to the separatrix (helps since charge state of C is
lower there)

= Limit ne sep < 1.0el19
D %tlart with Te = 50, smoothly joining with experimental value at 0.1. Helps with
ips
= Impurity escape velocity 200cm/s. Neutral influx varying linearly with ne_ave
and Zeif measured

= FRANTIC call frequency=2. lonization E per atom = 13.6eV, Wall released
neutral energy 30eV

= Extra Bohm 0.005
= Kadomstev+Porcelli model for Sawteeth Reconnection and Crash trigger

= Boundary at separatrix for nC. Helps avoid unphysical fluxes at larger
concentrations
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EPFL O =
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=PrL

M Swiss
Plasma
Center

Particle source

le2l

51

0.0

0.2

| |
0.4 0.6
JETTO Label, normalised

0.8

1.0

25



=PFL A metric was developed to quantify the agreement

Normalized error for T, Normalized error for n.
= Agreement is generally —fit
good, d < 2 for T, and S — Qualikiz

d~ < 2 for n,
= The low quality of the 3o N \/
data for T; and n. is
described by the \/V\J
orange lines

- Ratlo between blue . 0.05 0.10 0.'15tme[5]o.fzo 0.25 0.30 0.05 0.10 o.istme[SI.
and orange is a better
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=P*L " Power balance qualitatively agrees with
standalone nonlinear analysis

20-30% of lon flux
IS neoclassical
= At the beginning of the
discharge Q; is small

= Competition between ohmic Qe/Qi atp = 0.7 Qe/Qiatp =0.5
power, ionization and | |
charge exchange — ll\lonlmea(;
= Later Q;~Q, ~ modeiing
= 0./Q; decreases during the
discharge, but is generally i i,
lower than the nonlinear £ :
results. Note that 20-30% of
lon flux I1s neoclassical, and
even 60% before 0.1 [S]
= This Is consistent with an 0 s oho o ok ok ok "ok ol o om om0k

TIME [secs] TIME [secs]

™ Suiss underpredicted temperature
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=PrL
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LOCSOC?
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