

M. Marin, Y. Camenen, O. Sauter, P. Manas, L. Simons, F. J. Casson, C. Bourdelle and TCV collaborators

Integrated modelling of ohmic rampup at TCV

Michele Marin

Swiss Plasma Center

EPFL Understanding and controlling the ramp up is crucial to tokamak operation

- Work done within EUROfusion TSVV11 activities
- Focus on validation of integrated modelling
 - Comparison against non-linear gyrokinetic simulations
 - Comparison against experiments
- Ramp up is a critical phase:
 - Need to minimize magnetic flux consumption while avoiding MHD instabilities
 - l_i , V_{loop} and β_N need to be controlled at the same time

EPFLNumerous challenges need to be overcome for
successful modelling of the ramp up

- Specific conditions: high T_e/T_i , high q, high collisionality, high R/L_n (TCV)
- Numerous physics processes are important (neutral source, sawteeth, turbulence, neoclassical transport etc)
- Large uncertainties on the simulation settings
 - Uncertainties about initial conditions (particularly current profile)
 - Uncertainties about boundary conditions
- State of the art is the simultaneous prediction of j, T_e , T_i [Fable PPCF 2013, Maget PPCF 2022, Ho NF 2023]
- The predictive channels interact nonlinearly

Plasma Center Aim is to use the same settings for multiple discharges

EPFL Well diagnosed TCV shot was chosen as reference #64965

- TCV, Ohmic, L-mode plasma
- Limited (diverted after the modelled interval)
- With electron (Thomson Scattering) and ion (CXRS) measurements during the ramp-up

t [s]	0.03	0.3
$I_p[MA]$	0.08	0.32
к [-]	1.0	1.5
δ [–]	0	0.2
n _{e,line ave} [10 ¹⁹]	2.0	5.5
$Z_{eff}\left[- ight]$	1.2?	1.2
$B_T[T]$	1.4	1.4

EPFL Quasilinear and non-linear gyrokinetic are in qualitative agreement

Long wavelengths stable

Plasma

Center

- Fair agreement with quasilinear estimates [Y. Camenen, this conference]
- TEM dominated $(R/L_n$ driven) despite of collisionality, especially in the early phase, then transitioning to a hybrid TEM-ITG
- ETG at short wavelength, stabilized when s/q increases

EPFL Modelling as self-consistent and predictive as possible

Romanelli M Plasma Fusion Res 2014 Romanelli Jetto Manual 1988 Houlberg W.A. Phys. Plasmas 1997 Challis C.D. Nucl. Fusion 1989 Eriksson L.GNucl. Fusion .1993 Lauro-Taroni L. Controlled Fusion and Plasma Physics Tamor S. J. Comput. Phys 1981

- Self consistently predict j, T_e, T_i, n_e, n_C
- HFPS, IMAS compatible, equilibrium predicted by ESCO, neutral source by FRANTIC, impurities by SANCO, turbulent transport with QuaLiKiz and TGLF, neoclassical transport with NCLASS
- Boundary shape evolving in time are imposed and extracted by the experimental reconstruction of LIUQE
- Line averaged density from experiment and feedback controlled
- Boundaries at $\rho = 0.99$ for T_e , T_i , n_e , n_C
- Impurity puff constant in time set to roughly match the experimentally measured n_c
- Hollow initial q profile, limit set to $T_i/T_e < 3$

EPFL Comparison with the experiment shows fair agreement

- Simulation started at t = 0.034[s], simultaneous with the first HRTS measurement
- Inversion radius for modelling calculate as q = 1.1
- *V*_{loop} noisy but generally underestimated
- Agreement lower for t < 0.1, but generally good

Sawteeth

7

0.25

0.30

EPFL Comparison with the experiment shows fair agreement

- Simulation started at t = 0.034[s], simultaneous with the first HRTS measurement
- Inversion radius for modelling calculate as q = 1.1
- *V*_{loop} noisy but generally underestimated
- Agreement lower for t < 0.1, but generally good

Sawteeth

EPFL Comparison with the kinetic profiles shows good agreement

- Good agreement is reached on all channels
- Slightly higher T_e, T_i predicted by TGLF (SAT2, no ExB), but n_e generally closer to experiment
- *T_i* is systematically underpredicted
- Scatter in n_C data (due to miscalibration or misalignment) make comparison more difficult

Fair agreement was obtained during early phase

- Early phase proved to be more challenging
 - Initial conditions more important
 - Larger errorbars for CXRS
- QuaLiKiz predicts transition from TEM to ITG-TEM, especially at inner radii
- Agreement improves after the onset of Sawteeth

Swiss Plasma

Center

EPFL A metric was developed to quantify the agreement

Metric defined as

 $d = \sum_{\rho=sep}^{axis} 2 \left| \frac{d_{fit}^{\rho} - d_{model}^{\rho}}{d_{fit}^{\rho} + d_{model}^{\rho}} \right|$

- Agreement is generally ~15%
- The chosen time instances are representative of all instances
- No significant difference between QuaLiKiz and TGLF

Swiss Plasma Center

11

EPFL Multiple discharges and variables are compared simultaneously ¹²

۶

- Extensive sensitivities were run to explore robustness of settings and physics
- Allows identification of important parameters

Simulations on

previous slide

Swiss Plasma

Center

۶

EPFL Multiple discharges and variables are compared simultaneously ¹³

- Extensive sensitivities were run to explore robustness of settings and physics
- Allows identification of important parameters
- The same settings lead to good agreement over multiple discharges
- Pipeline is in place to include an arbitrary number of discharges

Swiss Plasma

Center

EPFL Conclusions

- Multiple TCV ramp-up phases have been reproduced with integrated modelling
- Good agreement with the experimental data was obtained, both on global quantities and profiles evolution
- There is broad agreement between the turbulence predicted by quasilinear and higher fidelity models
 - R/L_n driven TEM dominated plasmas, then transitioning to ITG-TEM
 - $Q_e/Q_i > 1$, especially in early ramp-up phase
- An extensive sensitivity on physical and boundary conditions was performed
- A pipeline leveraging the IDS has been built to enable a larger scale validation exercise

Backup slides

- Power balance
- Turbulence plots
- Turbulence at rho = 0.9
- Figure of merit with experiments
- Early TGLF
- Comparison only QuaLiKiz
- Loc soc?

EPFL **Power balance qualitatively agrees with** standalone nonlinear analysis

- At the beginning of the discharge Q_i is small
- Competition between ohmic power, ionization and charge exchange

Sources per unit volume Integrated sources

t = 0.07 [s]

EPFL Power balance qualitatively agrees with standalone nonlinear analysis

- At the beginning of the discharge Q_i is small
- Competition between ohmic power, ionization and charge exchange
- Later $Q_i \sim Q_e$

Sources per unit volume Integrated sources

t = 0.17 [s]

EPFL Volume weighted

•
$$d = \sum_{\rho=sep}^{axis} \frac{2}{V} \left| \frac{d_{fit}^{\rho} - d_{model}^{\rho}}{d_{fit}^{\rho} + d_{model}^{\rho}} \right|$$

- Low volumes close to axis weighted less
- Boundary heavily weighted, penalizes changing boundaries even within error
- Non immediately interpretable

Swiss Plasma

Center

EPFL Experimentally weighted 10

 Takes error-bars into account

•
$$d = \sum_{\rho=sep}^{axis} 2 \left| \frac{d_{fit}^{\rho} - d_{model}^{\rho}}{\sigma_{exp}^{\rho}} \right|$$

 Part of the disagreement is due to the poor quality of the experimental data (Ti, nc)

Swiss Plasma Center

EPFL More sensitivities

- High Prad not being important shows stiffness of the profiles
- Agreement is improved consistently with internal boundary conditions
- ETG is not very important
- Even this simple relative distance is skewed to the boundaries

Swiss Plasma

Center

EPFL Turbulence from QualiKiz at $\rho = 0.5$

- TEM unstable during the early phase, then transitioning to ITG-TEM
- Subdominant modes present but very discontinuous
- ETG is unstable, but does not drive significant fluxes (in integrated modelling)

EPFL Turbulence from QuaLiKiz at $\rho = 0.7$

- TEM unstable during the early phase, then transitioning to ITG-TEM
- Subdominant modes present but very discontinuous
- ETG is unstable, but does not drive significant fluxes (in integrated modelling)
- TEM remains dominant at $\rho = 0.7$
- Show Qe/Qi from QuaLiKiz

22

EPFL Specific settings

- Limit Ti/Te < 3</p>
- Initial q profile hollow
- Initial Zeff at 1.5, lower close to the separatrix (helps since charge state of C is lower there)
- Limit ne sep < 1.0e19</p>
- Start with Te = 50, smoothly joining with experimental value at 0.1. Helps with 'blips'
- Impurity escape velocity 200cm/s. Neutral influx varying linearly with ne_ave and Zeff measured
- FRANTIC call frequency=2. Ionization E per atom = 13.6eV, Wall released neutral energy 30eV
- Extra Bohm 0.005
- Kadomstev+Porcelli model for Sawteeth Reconnection and Crash trigger
- Boundary at separatrix for nC. Helps avoid unphysical fluxes at larger concentrations

100

0.0

0.2

0.4

 $ho_{tor, norm}$

0.6

0.8

1.0

EPFL Gift

Swiss Plasma Center 24

EPFL Particle source

EPFL A metric was developed to quantify the agreement

- Agreement is generally good, d < 2 for T_e and $d \sim < 2$ for n_e
- The low quality of the data for T_i and n_c is described by the orange lines
- Ratio between blue and orange is a better measure of agreement
- The chosen time instances are representative of all instances

26

EPFL Power balance qualitatively agrees with standalone nonlinear analysis

- At the beginning of the discharge Q_i is small
- Competition between ohmic power, ionization and charge exchange
- Later $Q_i \sim Q_e$

Swiss Plasma Center

- Q_e/Q_i decreases during the discharge, but is generally lower than the nonlinear results. Note that 20-30% of lon flux is neoclassical, and even 60% before 0.1 [s]
- This is consistent with an underpredicted temperature

 Q_e/Q_i at $\rho = 0.7$ Q_{ρ}/Q_i at $\rho = 0.5$ Nonlinear 4.0 4.0 Integrated modelling 3.5 3.5 3.0 3.0 2.5 2.5 [unitless] [unitless] 1.5 1.5 1.0 1.0 0.5 0.5 0.0 0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.05 0.10 0.15 0.20 0.25 0.30 TIME [secs] TIME [secs]

20-30% of Ion flux

is neoclassical

EPFL LOC SOC?

Swiss Plasma Center