Initial Experimental Results from the DIII-D Negative Triangularity Campaign

COLUMBIA

Sandia

National

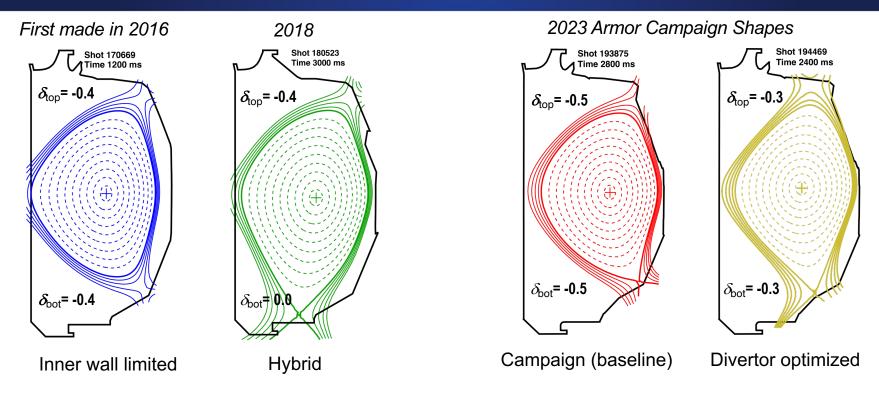
Lawrence Livermore

ional Laboratory

GENERAL ATOMICS

M. E. Austin¹ on behalf of

K. E. Thome², C. Paz-Soldan³, A. O. Nelson³, A. Hyatt², A. Marinoni⁴,
F. Scotti⁵, J. L. Barr², W. Boyes³, L. Casali⁶, C. Chrystal², S. Coda⁷, T. B. Cote²,
S. Ding², X. D. Du², D. Eldon², D. Ernst⁴, T. Happel⁸, R. Hong⁹,
F. O. Khabanov¹⁰, G. J. Kramer¹¹, C. J. Lasnier⁵, P. Lunia¹, G. R. McKee¹⁰,
A. McLean⁵, S. Mordijck¹², M. Okabayshi¹¹, O. Sauter⁷, T. Pütterich⁸,
L. Schmitz⁹, D. Shiraki¹³, S. Stewart⁹, Y. Takemura¹⁴, D. D. Truong¹⁵,
T. Osborne², H. Q. Wang², T. M. Wilks⁴, H.S. Wilson³, J. Yang¹⁰, M. Zhao⁵

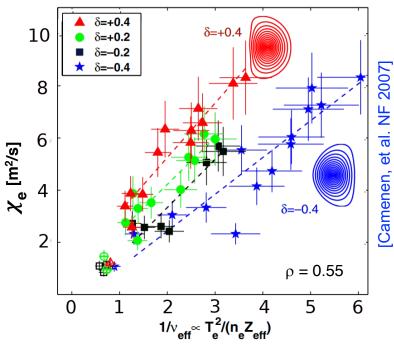

¹University of Texas – Austin, ²General Atomics, ³Columbia University,
 ⁴MIT Plasma Science and Fusion Center, ⁵Lawrence Livermore National Laboratory,
 ⁶University of Tennessee-Knoxville, ⁷Ecole Polytechnique Fédérale de Lausanne,
 ⁸Max-Planck-Institut für Plasmaphysik, ⁹University of California – Los Angeles,
 ¹⁰University of Wisconsin–Madison,¹¹Princeton Plasma Physics Laboratory,
 ¹²William and Mary, ¹³Oak Ridge National Laboratory,
 ¹⁴National Institute for Fusion Sciences, ¹⁵Sandia National Laboratory

ABORATOR

DAK

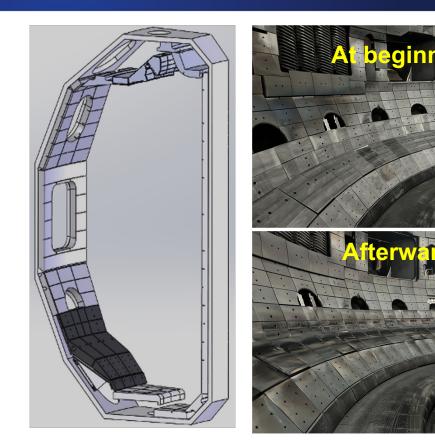
Presented at: EU-TTF 2023, Nancy, France September 12, 2023

History of Negative Triangularity (NT) plasmas on DIII-D


Shape development & control were the greatest technical issues

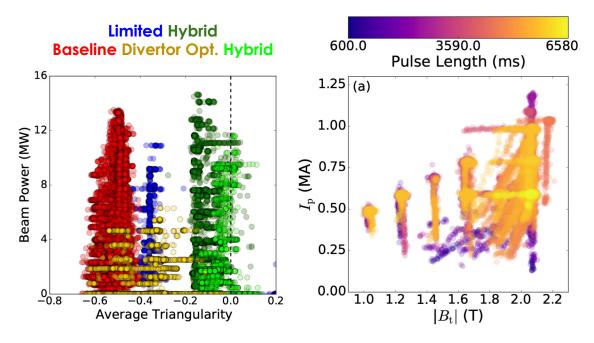
Earliest NT experiments inspired by results from TCV

- NT first explored in '70/'80s experimentally and theoretically
 - mostly abandoned after predicted to not have access to second stability
- NT potential first demonstrated on TCV with observation of 2x improvement in confinement


TCV: Impact of Negative Triangularity on Transport

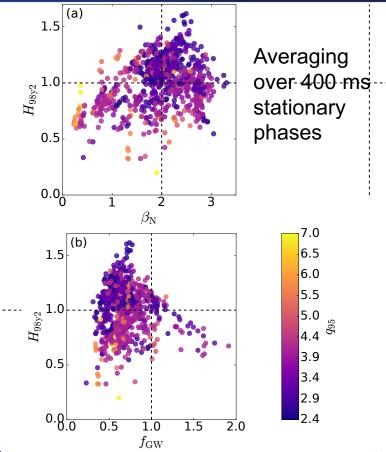
2023: Ran dedicated NT "Armor Campaign" to answer key questions

- Goal: determine if the fusion community should continue exploring NT scenarios
 - 13 experiments focused plasma confinement, stability, L-H transition, advanced scenarios, and core-edge integration
 - One full month of dedicated NT operation



NT Campaign experiments covered wide operational space

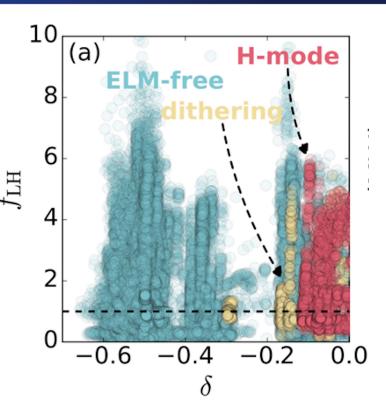
- Full DIII-D NT dataset now includes ~890 discharges
 - 6-fold increase due to this campaign



Plasma parameters: $I_p = 0.5 - 1.2 \text{ MA}$ $B_T = 1.0 - 2.2 \text{ T}$ $q_{95} = 2.4 - 7.0$ $P_{aux} = 0 - 15 \text{ MW}$ $T_{inj} = -4 - 10 \text{ Nm}$ $n_e = 2 - 14 \times 10^{19} \text{ m}^{-3}$ $\tau_{pulse} \sim 4 - 6.5 \text{ s}$

Initial experimental observations from campaign promising for an FPP

- Reliable vertically stable plasmas constructed that lasted the entire discharge length
- High performance achieved in an ELM-free regime with ${\rm H}_{98}{>}1$ and $\beta_N{>}2.5$
- Operation at q₉₅<3
- Greenwald fraction f_{GW}~ 2 demonstrated
- Dissipative edge solution obtained with divertor detachment

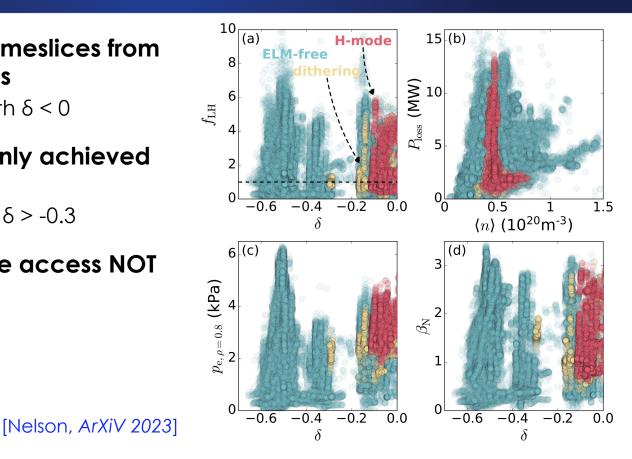


NT plasmas are completely ELM-free as long as $\delta < \delta_{crit}$

- Figure shows 20ms timeslices from 890 DIII-D discharges
 - every DIII-D shot with $\delta < 0$
- ELMs and H-mode only achieved at $\delta > -0.18$

- LCO-like activity at $\delta > -0.3$

- At strong NT, H-mode access NOT dependent on:
 - density
 - injected power
 - torque


[Nelson, ArXiV 2023]

NT plasmas are completely ELM-free as long as $\delta < \delta_{crit}$

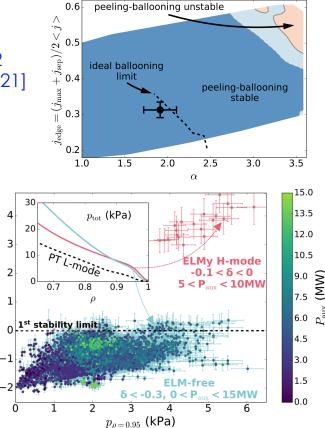
- Figure shows 20ms timeslices from 890 DIII-D discharges
 - every DIII-D shot with $\delta < 0$
- ELMs and H-mode only achieved at $\delta > -0.18$

- LCO-like activity at $\delta > -0.3$

- At strong NT, H-mode access NOT dependent on:
 - density
 - injected power
 - torque

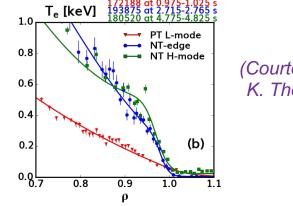
NT ELM suppression consistent with ideal ballooning limit

- $\delta < \delta_{crit}$: access to the 2nd stability region closes
 - H-mode typically accessed in
 "2nd stability region"
 [Nelson, et. al., NF 2022 also Saarelma, PPCF2021]
 - Ideal ballooning (infinite-n) boundary clamps pedestal height below ELM limit
- ELM suppression on DIII-D consistent with infinite-n ballooning mode
 - NT geometry closes access to 2nd stability, so pedestal gradients limited by the 1st stability boundary
 - Robust ELM suppression at $\delta < \delta_{crit}$
 - Only part of the story still variation in the pedestal height

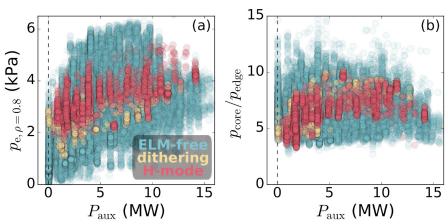


(Courtesy of Oak Nelson)

M.E. Austin / EU-TTF/ Sep 12, 2023

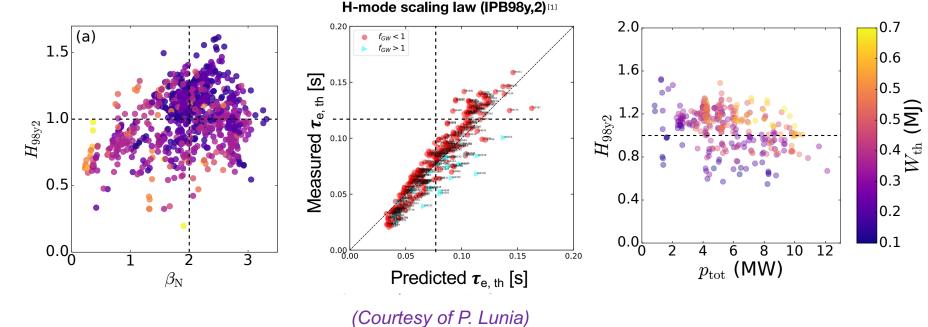

 $\min(\alpha_{\text{ballooning}})$

 $\mathsf{max}(lpha_{\mathrm{ped}})$

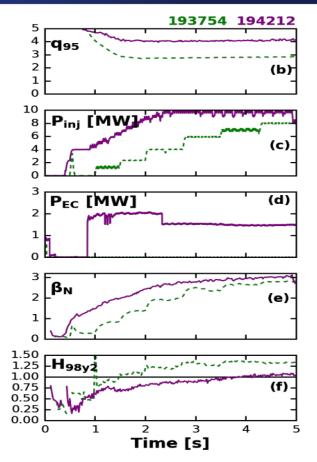


T_{e} pedestals in the "NT Edge" are higher than typical L-mode

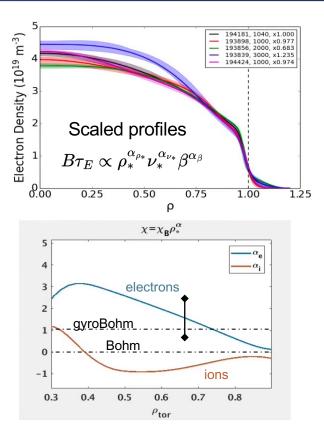
- Temperature pedestals observed in both inner-wall limited and diverted NT
 - n_e profiles remain L-mode-like
 - Similar to I-mode
 - Higher $T_{\rm e}$ pedestal contributes to 20-30% increase in stored energy
- Transport in NT edge is NOT stiff
 - Allows for high pressures in NT as far out as $\psi_N \sim 0.8$
 - ELM-free NT plasmas can achieve higher pressures than weak NT H-modes



Energy confinement consistent with IPB98y,2 scaling

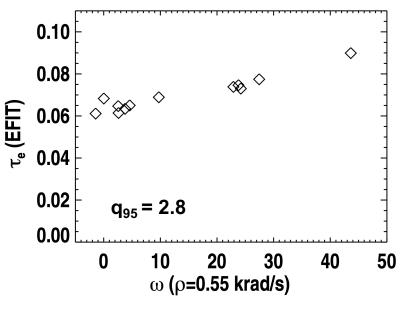

- Power degradation at least as strong as IP98y,2 scaling
 - Currently assessing collinearities between parameters and uncertainties

Robust ELM suppression allows for advanced core scenarios


- ELM suppression is robust to changes in core
 - Allows for tailoring of NT scenario!
 - Synergy between core and edge solutions
- Inductive high-gain discharge at lower q₉₅=2.7 and advanced "steady-state like" at q₉₅=4 both achieved
 - Ohmic, neutral beams, electron cyclotron and mixed heating used
 - Both achieved high performance H_{98} ~1 and β_N >2.5 with q_{min} ~1 in q_{95} =2.7 and q_{min} > 1 in q_{95} =4 discharges
 - More energetic particle transport at high q₉₅

Ongoing: ρ^* and ν^* dependence on energy confinement time

- To study confinement scaling, dimensionless parameters collisionality (ν*) varied by x3 and relative gyroradius (ρ*) by x1.4
 - Low magnetic field discharges prone to density peaking and instabilities
 - Density profiles difficult to match
 - v^* similar to positive triangularity H-mode
- Initial indications: ions are Bohm-like and electrons are gyroBohm-like leading to mixed transport
 - Similar to seen w/ L-mode plasmas on DIII-D
- Needs to be validated with data from other machines

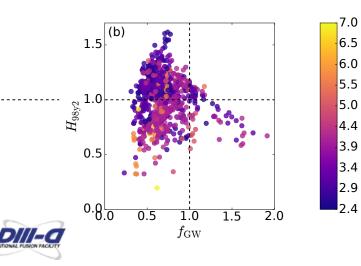


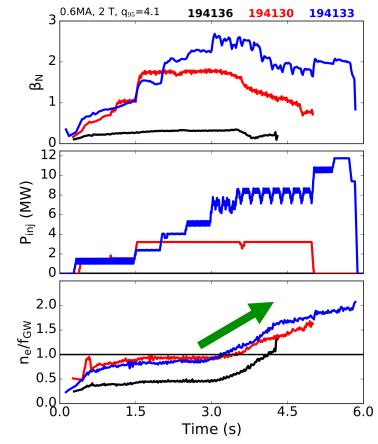
(Courtesy of A. Marinoni and C. Chrystal)

Energy confinement decreases as rotational shear decreases

- When torque changed from strongly co-current to nearly balanced
 - At q_{95} =2.8, τ_e reduced by 35%
 - At q₉₅=4, $\tau_{\rm e}$ reduced by 25%
- At low rotation, MHD not a problem and generally absent
 - (unlike typ. high performance PT plasmas)
- Similar response to positive triangularity H-modes

Consistent with GK simulation predictions [Marinoni, AAPPS 2021]



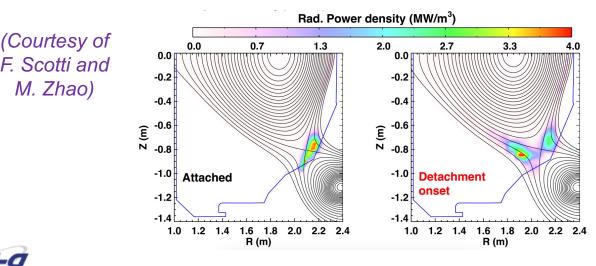

(Courtesy of C. Chrystal)

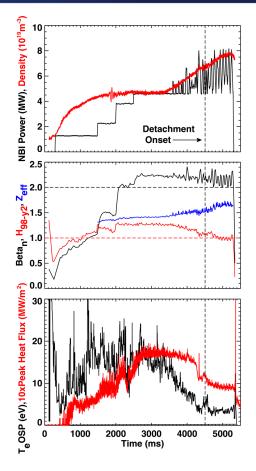
High Greenwald fractions accessible in NT with high power input

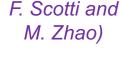
- In ohmic NT plasmas, density is limited by Greenwald fraction
- As neutral beam applied power increased, achieved density is increase up to $f_{\rm GW}\sim 2$
- Degradation of confinement at high f_{GW} coincides with loss of pedestal

M.E. Austin / EU-TTF/ Sep 12, 2023

(Courtesy of

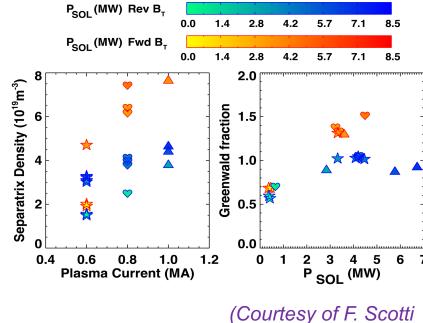

R. Hong and


O. Sauter)


 q_{95}

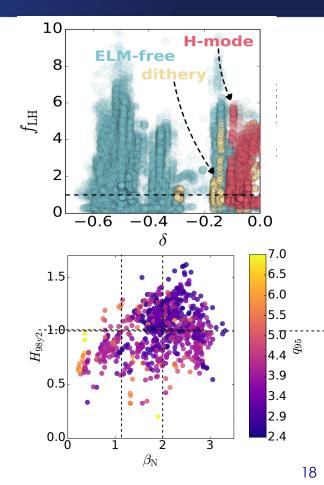
Dissipative divertor demonstrated with gas puffing at high density

- On TCV, detachment only achieved with impurities •
- In DIII-D campaign, high density allowed for detachment without impurities
- Higher normalized densities were needed than PT, consistent with the short parallel connection length



Higher density ($f_{GW} > 1$) needed to detach with favorable Grad_B

- Higher separatrix densities needed for detachment in FwdBT (favorable ion gradB drift direction)
 - Reproduced in UEDGE modeling
 - Similar to PT (though more severe since B_T at x-point is ~30% lower in NT plasmas)
- Higher n_{e,sep} required to detach with increasing l_p
 - Consistent with shorter $L_{//}$ and observed narrowing of λ_q .
- No "detachment cliff" observed [A. E. Jaervinen, PRL 2019]
 - Smooth transition instead



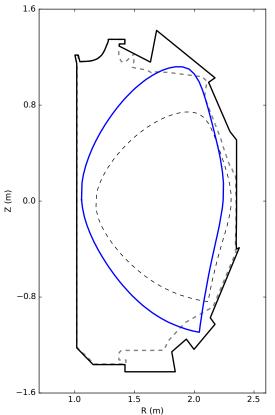
and M. Zhao)

Summary: DIII-D NT Initial Results are Promising for a Reactor

- NT plasmas exhibit good confinement H₉₈>1 in a robust ELM-free regime
 - has benefits for not triggering MHD as well
- Non-seeded detachment achieved with similar dependencies as positive triangularity
- Greenwald fraction f_{GW}~2 achieved
- Vertical stability controllable in baseline shape
- Low impurity retention observed
- Questions about scalings to reactors remain.....
- Need a proper divertor to better study coreedge integration

Future Work Planned for DIII-D

• Increase plasma volume and improve shape control


- Potentially requires new hardware
- "Best triangularity" not yet known
- Explore maximum elongation

• Add baffled divertor with a longer connection length

- Needed to answer key core-edge integration problems
- Can be done by removing some diagnostics

More RF power and dedicated runtime

- Facilitate energy confinement studies with strongly RF-heated plasmas
- Push $β_N$ at high q_{min} for steady-state plasma exploration

