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History of Negative Triangularity (NT) plasmas on DIII-D

Inner wall limited Hybrid Campaign (baseline) Divertor optimized

First made in 2016 2018 2023 Armor Campaign Shapes

Shape development & control were the greatest technical issues
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Earliest NT experiments inspired by results from TCV

• NT first explored in '70/'80s 
experimentally and theoretically
– mostly abandoned after predicted 

to not have access to second 
stability

• NT potential first demonstrated on 
TCV with observation of 2x 
improvement in confinement

TCV: Impact of Negative 
Triangularity on Transport
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2023: Ran dedicated NT "Armor Campaign" to answer key questions

• Goal: determine if the 
fusion community should 
continue exploring NT 
scenarios
– 13 experiments 

focused plasma 
confinement, stability, 
L-H transition, 
advanced scenarios, 
and core-edge 
integration

– One full month of 
dedicated NT 
operation

At beginning

Afterwards
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• Full DIII-D NT dataset now includes ~890 discharges 
– 6-fold increase due to this campaign

NT Campaign experiments covered wide operational space 

Plasma parameters:
Ip = 0.5 – 1.2 MA
BT = 1.0 – 2.2 T
q95 = 2.4 – 7.0

Paux = 0 – 15 MW
Tinj = -4 – 10 Nm

ne = 2 – 14 x1019 m-3 
𝜏pulse ~ 4 – 6.5 s

Limited Hybrid
Baseline Divertor Opt. Hybrid
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Averaging 
over 400 ms 
stationary 
phases
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Initial experimental observations from campaign promising for an FPP

• Reliable vertically stable plasmas constructed 
that lasted the entire discharge length

• High performance achieved in an ELM-free 
regime with H98>1 and ꞵN>2.5

• Operation at q95<3

• Greenwald fraction fGW~ 2 demonstrated

• Dissipative edge solution obtained with 
divertor detachment 
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• Figure shows 20ms timeslices from 
890 DIII-D discharges
– every DIII-D shot with δ < 0

• ELMs and H-mode only achieved 
at δ > -0.18
– LCO-like activity at δ > -0.3

• At strong NT, H-mode access NOT 
dependent on:
– density
– injected power
– torque

NT plasmas are completely ELM-free as long as 𝛿 < 𝛿crit

[Nelson, ArXiV 2023]
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• 𝛿 < 𝛿crit: access to the 2nd stability region closes
– H-mode typically accessed in 

“2nd stability region”
– Ideal ballooning (infinite-n) boundary 

clamps pedestal height below ELM limit

• ELM suppression on DIII-D consistent with 
infinite-n ballooning mode
– NT geometry closes access to 2nd 

stability, so pedestal gradients limited 
by the 1st stability boundary

– Robust ELM suppression at 𝛿 < 𝛿crit

– Only part of the story – still variation in 
the pedestal height 

NT ELM suppression consistent with ideal ballooning limit

[Nelson, et. al., NF 2022 
also Saarelma, PPCF2021]

(Courtesy of Oak Nelson) 
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• Temperature pedestals observed in both 
inner-wall limited and diverted NT 
– ne profiles remain L-mode-like
– Similar to I-mode 
– Higher Te pedestal contributes to 20-

30% increase in stored energy 

• Transport in NT edge is NOT stiff
– Allows for high pressures in NT

as far out as ψN ~ 0.8
– ELM-free NT plasmas can 

achieve higher pressures than 
weak NT H-modes

Te pedestals in the “NT Edge” are higher than typical L-mode

(Courtesy of 
K. Thome) 
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• Power degradation at least as strong as IP98y,2 scaling
– Currently assessing collinearities between parameters and uncertainties 

Energy confinement consistent with IPB98y,2 scaling 

(Courtesy of P. Lunia) 
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Robust ELM suppression allows for advanced core scenarios

• ELM suppression is robust to changes in core
– Allows for tailoring of NT scenario!
– Synergy between core and edge solutions

• Inductive high-gain discharge at lower q95=2.7 
and advanced “steady-state like” at q95=4 
both achieved
– Ohmic, neutral beams, electron cyclotron 

and mixed heating used
– Both achieved high performance H98~1 and 
ꞵN>2.5 with qmin ~1 in q95=2.7 and qmin > 1 in 
q95=4 discharges

– More energetic particle transport at high q95
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• To study confinement scaling, dimensionless 
parameters collisionality (𝜈*) varied by x3 and 
relative gyroradius (⍴*) by x1.4
– Low magnetic field discharges prone to 

density peaking and instabilities 
– Density profiles difficult to match
– 𝜈* similar to positive triangularity H-mode

• Initial indications: ions are Bohm-like and 
electrons are gyroBohm-like leading to mixed 
transport
– Similar to seen w/ L-mode plasmas on DIII-D

• Needs to be validated with data from other 
machines

Ongoing: ⍴* and 𝜈* dependence on energy confinement time

Scaled profiles

electrons

Bohm
gyroBohm

ions

(Courtesy of A. Marinoni and C. Chrystal)
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• When torque changed from strongly 
co-current to nearly balanced
– At q95=2.8, 𝜏e reduced by 35%
– At q95=4, 𝜏e reduced by 25% 

• At low rotation, MHD not a problem 
and generally absent 
– (unlike typ. high performance PT plasmas)
• Similar response to positive 

triangularity H-modes

Energy confinement decreases as rotational shear decreases
1
4

q95 = 2.8

(Courtesy of C. Chrystal)

Consistent with GK simulation predictions  
[Marinoni, AAPPS 2021]
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• In ohmic NT plasmas, density is limited by 
Greenwald fraction 

• As neutral beam applied power increased, 
achieved density is increase up to fGW ~ 2

• Degradation of confinement at high fGW 
coincides with loss of pedestal

High Greenwald fractions accessible in NT with high power input
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(Courtesy of 
R. Hong and 
O. Sauter) 
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• On TCV, detachment only achieved with impurities
• In DIII-D campaign, high density allowed for 

detachment without impurities
• Higher normalized densities were needed than PT, 

consistent with the short parallel connection length

Dissipative divertor demonstrated with gas puffing at high density

(Courtesy of 
F. Scotti and 

M. Zhao)
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• Higher separatrix densities needed 
for detachment in FwdBT (favorable 
ion gradB drift direction)
- Reproduced in UEDGE modeling
- Similar to PT (though more severe 

since BT at x-point is ~30% lower in 
NT plasmas)

• Higher ne,sep required to detach with 
increasing Ip 
- Consistent with shorter L// and 

observed narrowing of λq. 

• No "detachment cliff" observed 
- Smooth transition instead

Higher density (fGW > 1) needed to detach with favorable Grad_B

(Courtesy of F. Scotti 
and M. Zhao)[A. E. Jaervinen, PRL 2019]
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Summary: DIII-D NT Initial Results are Promising for a Reactor
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• NT plasmas exhibit good confinement H98>1 in a 
robust ELM-free regime
– has benefits for not triggering MHD as well
• Non-seeded detachment achieved with similar 

dependencies as positive triangularity
• Greenwald fraction fGW~2 achieved
• Vertical stability controllable in baseline shape
• Low impurity retention observed
• Questions about scalings to reactors remain
• Need a proper divertor to better study core-

edge integration
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• Increase plasma volume and improve shape control
– Potentially requires new hardware 
– “Best triangularity” not yet known 
– Explore maximum elongation

• Add baffled divertor with a longer connection length
– Needed to answer key core-edge integration 

problems
– Can be done by removing some diagnostics

• More RF power and dedicated runtime
– Facilitate energy confinement studies with strongly 

RF-heated plasmas
– Push βN at high qmin for steady-state plasma 

exploration 

Future Work Planned for DIII-D
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