

Pedestal stability analysis of MAST-U H-mode plasmas and impact of plasma shaping parameters

<u>Koki Imada</u>^{1,2*}, M. Knolker², T.H. Osborne², S. Saarelma³, P.B. Snyder⁴, H.R. Wilson⁴ and the MAST Upgrade Team³

*koki.imada@york.ac.uk

- 1. York Plasma Institute, University of York, Heslington, York, YO10 5DD, UK
- 2. General Atomics, San Diego, CA 92186-5608, USA
- 3. UKAEA, Abingdon, Oxon, OX14 3DB, UK
- 4. Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Outline

- "Headline news":
 - Peeling-limited pedestal phases observed in MAST-U H-mode scenario.
- Outline:
 - Peeling-ballooning theory for ELMs
 - Key parameters: " $J_{N,ped}$ " and " α "
 - MAST-U pedestal stability
 - Extended stability region between peeling and ballooning branches (weakening coupling)
 - In high $T_{e,ped}$, low collisionality cases, stable against ballooning modes entirely.
 - Interesting high-triangularity case
 - Ongoing: more shaping parameter scans

Peeling-ballooning theory for ELM cycle

- According to the theory:^{#1}
 - Pedestal stability in terms of pedestal current density, J_{N,ped} and normalised pedestal pressure gradient, α:

$$J_{\rm N} = \frac{J_{\rm PB}(\psi) + J_{\rm PB}(\psi_{\rm separatrix})}{2I(\psi)/A(\psi)}$$
$$J_{\rm PB} = (RB_T/R_0)\langle J_{\parallel}/B \rangle$$
$$\alpha = \frac{\mu_0}{2\pi^2} \frac{\partial V}{\partial \psi} \left(\frac{V}{2\pi^2 R}\right)^{1/2} \frac{\partial p}{\partial \psi}$$

- ELM triggered when stability boundary is crossed.
- Crash brings $J_{N,ped}$ and α back to the stable region again.

- How can we improve performance?
- How can we "move" the pedestal stability boundary?

Research aim: optimise MAST-U pedestal stability

- Future fusion reactors, e.g. STEP, will operate in ELM-free* H-mode regimes.
 - Needs to avoid high-*n* ideal ballooning modes
 - Also stay clear of low-*n* peeling mode stability boundary
- Questions:
 - What affects the pedestal stability boundary?
 - pedestal T_{e} , collisionality v_{*} , etc.
 - plasma shaping parameters:^{#2,#3}
 - scrape-off layer & divertor config., etc. etc.
 - How do spherical tokamaks compare with conventional tokamaks?

#2: Snyder et al, Nucl. Fusion 55 083026 (2015), etc.#3: Holcomb et al, Phys. Plasmas 16 056116 (2009), etc.

MAST-U H-mode analyses

- OMFIT kineticEFITtime^{#4} for profile fitting
- TRANSP for fast ion density/pressure profiles
- Fixed-boundary EFIT with electron profiles for pedestal structure
- VARYPED^{#5} to create modelled equilibria with varying $J_{\rm N,ped}$ and α
- ELITE^{#6} for MHD pedestal stability analysis

Comparison illustrates how MAST-U pedestal is significantly more developed than MAST 7

#6: Wilson et al/Snyder et al, Phys. Plasmas 9 1277/2037 ('02)

Pedestal stability diagram for MAST-U^{#7}

Pedestal stability diagram for MAST-U

Pedestal stability diagram for MAST-U

MAST-U high pedestal temperature case

- #47018 has a notably high pedestal temperature:
- Results in low collisionality:
- 100ms of no-ELM phase results in high α (also high N_{e,ped})
- High J_N in the pedestal region
- What about the P-B stability?

	45272	46977	47018
V _{*e,ped}	1.66	1.45	1.28
T _{e,ped} /keV	0.19	0.28	0.31
α	9.57	12.0	17.3
J _{N,ped}	0.92	1.15	1.91

Peeling-limited phase with high Te,ped and low v_{*}e,ped

• #47018 @320ms:

- Unlike "typical" MAST-U cases, no clear presence of ballooning stability boundary
- (At least marginally) stable to ideal ballooning modes!
- Lower mode numbers around expt. point: $n = 5 \sim 15$ (c.f. typically $30 \sim 40$)
- More "peeling-limited" than ballooning!

Peeling-limited phase with high Te,ped and low v*e,ped

11 / 18

Peeling-limited phase with high Te,ped and low v_{*}e,ped

- Even after the ELM crash, still high $T_{e,ped}$ and low $v_{*_{e,ped}}$
- But pedestal is wider (~ $6.4\%\psi_N$ compared to ~ 5.5% ψ_{N} before the ELM crash).
- Still no clear ballooning boundary, and lower mode numbers around expt. point!

Not peeling-limited phase, but no ELMs either

0.5 -

stable

5

10

 $\gamma/a.u.$

2.5

2.0

1.5

1.0

0.5

0.0

α

stability boundary

point

20

experiment

25

ballooning

boundary

15

- Parameters more typical of MAST-U
- Ballooning boundary is back, with higher n
- But no ELMs (reasons as yet unclear...)
 - (will return to this in a few slides time...)
- * This was designed to be a triangularity shift experiment.

Peeling-limited phase with high Te,ped and low v*e,ped

No-ELM phase with high triangularity

^{15 / 18}

Summary

- Pedestal stability analysis on MAST-U ELMy H-modes
- High elongation (>2.0) , high squareness (~0.4) plasma
 → Seems to contribute to weaker peeling-ballooning coupling
- High pedestal temperature, low collisionality case:
 - Stable against high-*n* ideal ballooning modes
 - Longer inter-ELM period
 - Pedestal with much higher $J_{N,ped}$ and α .
- Next step: further shaping parameter scan:
 - Repeat experiments to verify impact of elongation, triangularity and squareness.
 - Compare with other tokamak data.

Ongoing: MAST-U pedestal stability experiments!

• Shaping parameter scans are ongoing, with high pedestal temperature cases:

- e.g. #48340, with high elongation (2.1), low squareness (<0.35), moderate triangularity (~0.5)
- c.f. #47018 \rightarrow , with high squareness (>0.4) and triangularity (>0.55)
- #48340 with high $T_{e,ped}$, moderate -1 density – potentially low $v_{*e,ped}$
- Full pedestal stability analysis ongoing!

Z (meters)