

Full-f gyrofluid turbulence and magnetic reconnection

EU-US Transport Task Force (TTF) 13.9.2023, Nancy Franz Ferdinand Locker

Research group "Nonlinear Dynamics and Complex Systems"

Institute for Ion Physics and Applied Physics, University of Innsbruck

Group leader: Alexander Kendl (Univ.-Prof.)

Project leader: Markus Held, PhD, assoc. Prof. (Univ. Tromsø)

PhD researchers:Franz Ferdinand Locker (Univ-Ass.)Pradeep Balasubramanian Somu (FWF)Fabian Grander (FWF)

MSc students: Frank Thönn, Alexander Stürz, Florian Gschößer, Andreas Matzneller, Tobias Stocker-Waldhuber

Funding:

universität

innsbruck

Poster Session 3:

Funding:

Gyrofluid model(s) in various implementations

- Library based, combines various different simulations.
- cuda-parallelization for HPC
- global geometry
- https://feltor-dev.github.io/

T3p,T3g

- 3D electromagnetic
- flux tube geometry
- delta-f, full-f, full-k
- thermal (work in progress)
- open field lines

Greeny

- 2D magnetic reconnection Code
- delta-f, full-f, low-k, full-k
- thermal (work in progress)
- https://git.uibk.ac.at/c74413
 15/greeny

TIFF

- 2D drift wave, interchange, impurity,
- delta-f, full-f, low-k, full-k

Gyrofluid model(s) for magnetized plasma turbulence

Pros:

- consistent FLR (finite Larmor radius) effects for arbitrary $\tau = T_i / T_e$
- trans-collisional closure (but possible Braginskii amendments)
- Landau damping model (for thermal fluctuations)
- computationally efficient (2-3 orders of magnitude faster than g.k.)

Cons:

- can not (well) treat trapped particles (?)
- can not (well) treat ion orbit loss effects (?)
- can not (yet) reproduce g.k. zonal flow damping (?)
- can not treat kinetic sheath (energetic tails ?)
- ...

→ gyrokinetic ? → fully kinetic ??

... but may be able to develop approximate **models** for missing kinetic effects (to be critically tested by comparison between g.f. and g.k. codes)

Polarisation equation in delta-f / full-f / low-k / full-k forms

Consistent polarisation equations (i.e. quasineutral "Poisson equation" for electric potential):

→ Recent re-derivation of full-f gyrofluid model for arbitrary wavelengths ("full-k"):

M. Held, M. Wiesenberger, A. Kendl: *Padé-based arbitrary wavelength polarization closures for full-f gyro-kinetic and -fluid models*. Nuclear Fusion **60**, 066014 (2020).

universität

nnsbruck

First 2-d (isothermal) gyrofluid simulations with the new full-f full-k model

Here: gyrofluid modified Hasegawa-Wakatani drift wave turbulence model $\alpha = 0.05$, $n_0 = 0.25$ -1.75, $\tau = 1$ (Pade), bath $\delta n_0 = 0.05$, $L = 96^2$, $n = 256^2$, $t = 500 L_n/c_s$

Magnetic reconnection

Where does it occur?

- Solar corona: heating and solar flares
- Earth's magnetosphere
- Tokamak:
 - Island formation
 - Sawtooth crashes

figure:

https://www.nasa.gov/content/goddard/mms/nasato-investigate-magnetic-explosions

Magnetic reconnection in Fusion

figure: Magnetic Reconnection in TokamaksRichard Fitzpatrick, Institute for Fusion Studies University of Texas at Austin Austin TX, USA

A full-f collisioneless magnetic reconnection model (J. Madsen ,Markus Held)

$$\begin{split} \frac{\partial}{\partial t}n &= -\left[\phi, n\right] + \begin{bmatrix} A_{\parallel}, nu_{\parallel} \end{bmatrix} \\ \frac{\partial}{\partial t}N &= -\left[\psi, N\right] + \begin{bmatrix} \Gamma_{1}A_{\parallel}, NU_{\parallel} \end{bmatrix} \\ \\ \frac{\partial}{\partial t}\left(u_{\parallel} + \frac{1}{\mu_{e}}A_{\parallel}\right) &= -\left[\phi, u_{\parallel} + \frac{1}{\mu_{e}}A_{\parallel}\right] + \begin{bmatrix} A_{\parallel}, u_{\parallel}^{2}/2 \end{bmatrix} - \frac{1}{\mu_{e}}\left[A_{\parallel}, \ln n\right] \\ \\ \frac{\partial}{\partial t}\left(U_{\parallel} + \Gamma_{1}A_{\parallel}\right) &= -\left[\psi, U_{\parallel} + \Gamma_{1}A_{\parallel}\right] + \begin{bmatrix} \Gamma_{1}A_{\parallel}, U_{\parallel}^{2}/2 \end{bmatrix} + \tau_{i}\left[\Gamma_{1}A_{\parallel}, \ln N\right] \end{split}$$

+ Maxwell's equations

Polarization equation:
$$-n + \Gamma_1 N = -\vec{\nabla} \cdot \left(N\vec{\nabla}_{\perp}\phi\right)$$

Ampère's law: $-\frac{1}{\beta}\vec{\nabla}_{\perp}^2 A_{\parallel} = -nu_{\parallel} + \Gamma_1(NU_{\parallel})$

Markus Held, Two dimensional collisional reconnection model, not published, UiT The Arctic University of Norway, N-9037 Tromsø, Norway

Analytical estimate for the linear growth rate

Energetics

 \rightarrow energy (emm) stored in the initial magnetic configuration is transferred into thermal free energy (enn), ExB advection (eeb)

 \rightarrow cold/warm ions probably dont change the qualitative behaviour but might still have a an influence on the dynamics (Tassi 2014, Biancalani & Scott 2011)

 \rightarrow this surely will change after introducing temperature dynamics -> Micro Tearing

Explosive Reconnection

Explosive reconnection $\mu_e = -0.000544662 \ \Delta' = 59.9063 \ \beta_e = 10^{-3}$

Measurement of the instability growth rate

Conclusions & Goals

- → First full-f full-k gyrofluid models show significant differences
- → Investigate role of hyperviscosity in Tearing-Reconnection
- \rightarrow Combine with other effects (drift waves, curvature, impurities, KH-Instab.)
- → Investigate reconnection in a turbulent environment and look into its influence on transport

Acknowledgement: important contributions from

- Assoc. Prof. Dr. Markus Held (University of Tromsø, Norway)
- Dr. Matthias Wiesenberger
 (Danish Technical University DTU

(former PhD researchers and postdocs in our group)

References

- A. Biancalani, Bruce D. Scott, Observation of explosive collisionless reconnection in 3D nonlinear gyrofluid simulations.,
- L. Comisso, D. Grasso, F. L. Waelbroeck, D. Borgogno; Gyro-induced acceleration of magnetic reconnection. Phys. Plasmas 1 September 2013; 20 (9): 092118. <u>https://doi.org/10.1063/1.4821840</u>
- Bruce Scott, Franco Porcelli; Two-dimensional fast reconnection in a fluid drift model. Phys. Plasmas 1 December 2004; 11 (12): 5468–5474. <u>https://doi.org/10.1063/1.1811616</u>
- C. Granier et al., Marginally stable current sheets in collisionless magnetic reconnection, PHYSICAL REVIEW E 106, L043201 (2022), DOI: 10.1103/PhysRevE.106.L043201
- J. Madsen, Full-F gyrofluid model, Phys. Plasmas 20 (2013), <u>https://doi.org/10.1063/1.4813241</u>
- Tassi, E., Grasso, D. & Comisso, L. Linear stability analysis of collisionless reconnection in the presence of an equilibrium flow aligned with the guide field. Eur. Phys. J. D 68, 88 (2014). <u>https://doi.org/10.1140/epjd/e2014-40730-6</u>
- and many more...