Initial results of gyrokinetic analysis of the core plasma in MAST Upgrade

UKAEA

B.S. Patel¹, I. Cziegler², A.R. Field¹, T. Rhodes³, P. Shi¹, S. Thomas¹, J. Ruiz-Ruiz⁴ & the MAST Upgrade team¹ ¹UKAEA, Culham Science Centre, Abingdon, OX14 3DB, United Kingdom ²York Plasma Institute, Department of Physics, University of York, Heslington, YO105DD, UK ³Dept. of Physics and Astronomy, University of California, Los Angeles, California 90095, USA ⁴Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK

25

35

30

Overview

- Capabilities of MAST Upgrade
- Focus on a mid-radius surface in a NBI heated L-mode discharge
- Linear gyrokinetic simulations identifying turbulent instabilities
- Nonlinear gyrokinetic simulations predicting heat fluxes at ion and electron scales

IK Atomic

- Attempts at nonlinear multiscale simulations to capture impact of both scales
- Summary

MAST Upgrade

- MAST Upgrade is a major enhancement to MAST
- Currently undergoing 3rd physics campaign
- High resolution diagnostics suite of profiles and turbulence
 - Thomson/Charge exchange for kinetic profiles
 - MSE profile measurements for safety factor profile
 - DBS/BES turbulence diagnostics
- Ideal for turbulence studies in an ST regime

Parameter	MAST-U 3 rd Campaign
R / a (m)	0.7 / 0.5
Bφ (T at 0.8m)	0.72
Max Ip (MA)	1.2
Мах к	>2.2
Max δ	0.6
Ohmic heating (MW)	Up to 1
NBI power	4.2MW up to 1.5s
NBI geometry	1 on axis, 1 off axis
Divertor geometries	Conventional, Super-X
Fuelling	Gas valves

MAST-U shot 47107

- Focus on a MU02 L-mode 750kA discharge
- >400ms of steady density/temperature profiles
- Significant sawteeth occurring
- BES measurements were taken
 - Not usable here due to overlap with Carbon emission line
- UCLA DBS system measurements are available

Integrated modelling

- Interpretive transport modelling done using TRANSP
 - MSE constrained equilibrium
 - Careful profile fitting
 - Medium resolution NUBEAM
 - Assume Z_{eff} =1.5 with Carbon impurity
- Examine at t = 0.6s
- Dominant electron heat transport
 - Ion heat and particle transport above neoclassical levels
 - Typically suppressed by ExB shear

0.2

0.4

0.6

 ψ_N

0.8

1.0

Linear gyrokinetics

- CGYRO was used to find the dominant linear instability
 - All analysis done using pyrokinetics A python library aimed to standard gyrokinetic analysis (on github and pip)
- 3 different classes of instability were found
- Microtearing modes
 - Electromagnetic
 - Destabilised by a/L_{Te}
- Ubiquitous modes [1]
 - Electrostatic
 - Branch of TEM seen in MAST [2] and ST40 [3]
- Electron temperature gradient modes
 - Electrostatic
 - Destabilised by a/L_{Te}

Parameter	Ψ _N =0.658
r/a	0.70
R _{maj} /a	1.62
∂R/∂r	-0.25
q	1.60
S	2.45
К	1.57
δ	0.03
$oldsymbol{eta}_e$	0.8%
v _{ee} (c _s /a)	0.53
a/L _n	2.93
a/L _{Te} , a/L _{Ti}	6.17, 5.17
n _{species}	3
$k_y \rho_s (n=1)$	0.0105
ρ^*	0.005

[1] - Coppi, B *et al.* PRL 33.22 (1974): 1329
[2] - Connor, J. W., et al. IAEA-CN-149. (2006)
[3] - Ren, Y., et al. PPCF 65.7 (2023): 075007.

Nonlinear simulations

- Linear simulations show 3 regions of interest all with significant overlap
- Multi-scale effects may play a role here
- δB_{\parallel} had little impact on the linearly so was dropped in the nonlinear simulations
- Nonlinear simulations include ExB shear unless stated otherwise

Ion scale: UM simulations

- UM dominant instability from $0.04 < k_v \rho_s < 1.05$
 - Some overlap with MTM here and sub-dominant to ETG
- Start with:
 - $k_{y,min}\rho_s = 0.065 (n=6)$
 - $k_{y,max}\rho_s = 1.4 (n=115)$
 - N_{kx} = 256
 - N_{ky} = 24

Ion scale: Flux predictions

- Fluxes saturate but peak near highest k_v
- Small increase from at ETG at highest k_v

Ion scale: Experimental comparisons

- Fluxes close to experimental values with ion scale alone likely within experimental uncertainties
- Removing ExB shear increases electron and ion fluxes by 2 orders of magnitude

Electron scale: ETG simulations

• ETG unstable from $1.0 < k_y \rho_s < 80$

Electron scale: ETG simulations

- Initial saturation period followed by blow up of flux
- Lowest k_y ion flux is the particular cause of problem

Electron scale: ETG simulations

- Initial saturation period followed by blow up of flux
- Lowest k_y ion flux is the particular cause of problem

Electron scale: Artificial low ky cut-off

- Increasing v_{ee} by a factor 4 opens up a stability window at lowest k_v
- No longer see a blow up obtain saturation after t ~ 60 c_s/a

XXX

Electron scale: Artificial low ky cut-off

- Increasing v_{ee} by a factor 4 opens up a stability window at lowest k_v
- No longer see a blow up obtain saturation after t ~ 60 c_s/a

XX

Electron scale: Artificial low ky cut-off

- Increasing v_{ee} by a factor 4 opens up a stability window at lowest k_v
- No longer see a blow up obtain saturation after t ~ 60 c_s/a

Overlap of modes

- Electron scale simulations (ETG) require
 - At least $k_{y,max}\rho_s = 50$ to capture peak in spectrum
 - UM drives significant flux at low k_v region if unstable
- Ion scale simulations (UM) require
 - $k_{y,max}\rho_s > 1$ to fully resolve linear spectrum and peak in nonlinear flux
 - ETG drive becoming significant at high k_y region

• Need multiscale simulations resolving both ends of the spectrum...

Multiscale attempts

- Method 1: Resolve electron scale with some ion scale
- Method 2: Resolve ion scale with some electron scale
- Multiscale made possible thanks to use of GPU-CGYRO [1]
 - Up to $N_{ky} = 128$
 - Up to $N_{kx} = 768$

[1] - Sfiligoi, Igor, Emily Belli, and Jeff Candy Aries 1152.82.1: 40-1.

Multiscale: Method 1

- 3 different scales agree up to $t = 10 a/c_s$
- Large increase in flux seen for even when $k_{y,min}\rho_s = 0.26$

Multiscale: Method 2

- Fluxes begin to saturate but at much higher levels that ion scale
 - Need to run for longer...
- Not captured peak in ETG spectrum

Conclusions

- Initial gyrokinetic simulations have been conducted for MAST Upgrade finding MTM, UM and ETG modes across a range a k_v

Atomic

- MTM, UM and ETG growth rate spectrum exhibits no scale separation
 - Ion scale simulations with UM saturate near experimental levels
 - Electron scale simulations with ETG only saturate with an artificial low k_v cut-off
- *Preliminary* multiscale simulations were attempted
 - Full ion scale needs to be captured for saturation
 - Likely need full electron scale to get a converged result
 - Impact of MTM not yet determined...
 - Further work examining these is needed
- Future work will make direct comparisons to the DBS systems via synthetic diagnostics