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• Capabilities of MAST Upgrade

• Focus on a mid-radius surface in a NBI heated L-mode discharge

• Linear gyrokinetic simulations identifying turbulent instabilities

• Nonlinear gyrokinetic simulations predicting heat fluxes at ion and electron 
scales

• Attempts at nonlinear multiscale simulations to capture impact of both scales

• Summary

Overview
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• MAST Upgrade is a major enhancement to MAST

• Currently undergoing 3rd physics campaign

• High resolution diagnostics suite of profiles and 
turbulence
• Thomson/Charge exchange for kinetic profiles

• MSE profile measurements for safety factor profile

• DBS/BES turbulence diagnostics

• Ideal for turbulence studies in an ST regime

MAST Upgrade
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Parameter MAST-U 3rd Campaign

R / a (m) 0.7 / 0.5

Bφ (T at 0.8m) 0.72

Max Ip (MA) 1.2

Max κ >2.2

Max δ 0.6

Ohmic heating (MW) Up to 1

NBI power 4.2MW up to 1.5s

NBI geometry 1 on axis, 1 off axis

Divertor geometries Conventional, Super-X

Fuelling Gas valves
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• Focus on a MU02 L-mode 750kA 
discharge

• >400ms of steady density/temperature 
profiles 

• Significant sawteeth occurring

• BES measurements were taken
• Not usable here due to overlap with 

Carbon emission line

• UCLA DBS system measurements are 
available

MAST-U shot 47107
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Integrated modelling
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• Interpretive transport modelling 
done using TRANSP

• MSE constrained equilibrium

• Careful profile fitting

• Medium resolution NUBEAM

• Assume Zeff=1.5 with Carbon impurity

• Examine at t = 0.6s

• Dominant electron heat transport
• Ion heat and particle transport above neoclassical levels

• Typically suppressed by ExB shear 



|

MTM UM
ETG

Electron 

diamagnetic

Ion 

diamagnetic

Ion scale Electron scale

• CGYRO was used to find the dominant linear instability
• All analysis done using pyrokinetics – A python library aimed to standard 

gyrokinetic analysis (on github and pip)

• 3 different classes of 
instability were found

• Microtearing modes
• Electromagnetic
• Destabilised by a/LTe

• Ubiquitous modes [1]
• Electrostatic
• Branch of TEM seen in 

MAST [2] and ST40 [3]

• Electron temperature
gradient modes
• Electrostatic
• Destabilised by a/LTe

Linear gyrokinetics
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Parameter ΨN=0.658

r/a 0.70

Rmaj / a 1.62

∂R/∂r -0.25

q 1.60

s 2.45

κ 1.57

δ 0.03

βe 0.8%

νee (cs /a) 0.53

a/Ln 2.93

a/LTe, a/LTi 6.17, 5.17

nspecies 3

kyρs (n=1) 0.0105

ρ* 0.005

[1] - Coppi, B et al. PRL 33.22 (1974): 1329

[2] - Connor, J. W., et al. IAEA-CN-149. (2006)

[3] - Ren, Y., et al. PPCF 65.7 (2023): 075007.
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• Linear simulations show 3 regions of 
interest all with significant overlap

• Multi-scale effects may play a role here

• δB|| had little impact on the linearly so was 
dropped in the nonlinear simulations

• Nonlinear simulations include ExB shear 
unless stated otherwise

Nonlinear simulations
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MTM UM
ETG

• UM dominant instability from 0.04 < kyρs < 1.05

• Some overlap with MTM here and sub-dominant to ETG

• Start with: 

• ky,minρs = 0.065 (n=6)

• ky,maxρs = 1.4 (n=115)

• Nkx = 256

• Nky = 24

Ion scale: UM simulations
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• Fluxes saturate but peak near highest ky

• Small increase from at ETG at highest ky

Ion scale: Flux predictions
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MTM UM

ETG
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MTM UM

ETG

• Fluxes close to experimental values with ion scale alone - likely
within experimental uncertainties

• Removing ExB shear increases electron and ion fluxes by 2 
orders of magnitude

Ion scale: Experimental comparisons 
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MTM UM

ETG

• ETG unstable from 1.0 < kyρs < 80

• Start with 

• ky,minρs = 1.05 (n=100)

• ky,maxρs = 36.8 (n=3500)

• Nky = 36

• Nkx = 256

Electron scale: ETG simulations
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• Initial saturation period followed by blow up of flux 

• Lowest ky ion flux is the particular cause of problem

Electron scale: ETG simulations

12

MTM UM

ETG
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Electron scale: ETG simulations
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• Initial saturation period followed by blow up of flux 

• Lowest ky ion flux is the particular cause of problem

MTM UM

ETG
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• Increasing νee by a factor 4 opens up a stability window at lowest ky

• No longer see a blow up obtain saturation after t ~ 60 cs/a

Electron scale: Artificial low ky cut-off
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ETG 

stabilised
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• Increasing νee by a factor 4 opens up a stability window at lowest ky
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Electron scale: Artificial low ky cut-off
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ETG 

stabilised
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• Increasing νee by a factor 4 opens up a stability window at lowest ky

• No longer see a blow up obtain saturation after t ~ 60 cs/a

Electron scale: Artificial low ky cut-off
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• Electron scale simulations (ETG) require

• At least ky,maxρs = 50 to capture peak in spectrum

• UM drives significant flux at low ky region if unstable 

• Ion scale simulations (UM) require 

• ky,maxρs > 1 to fully resolve linear spectrum and peak in nonlinear flux

• ETG drive becoming significant at high ky region

• Need multiscale simulations resolving both ends of the spectrum…

Overlap of modes
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• Method 1: Resolve electron scale with some 
ion scale

• Method 2: Resolve ion scale with some 
electron scale

• Multiscale made possible thanks to use of 
GPU-CGYRO [1]

• Up to Nky = 128

• Up to Nkx = 768

Multiscale attempts
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MTM UM
ETG

[1] - Sfiligoi, Igor, Emily Belli, and Jeff Candy Aries 1152.82.1: 40-1.
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Multiscale: Method 1
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• 3 different scales agree up to t = 10 a/cs

• Large increase in flux seen for even when ky,minρs = 0.26

MTM

ETG

UM
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• Fluxes begin to saturate but at much higher levels that ion scale

• Need to run for longer…

• Not captured peak in ETG spectrum

Multiscale: Method 2
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MTM UM

ETG
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• Initial gyrokinetic simulations have been conducted for MAST Upgrade finding 
MTM, UM and ETG modes across a range a ky

• MTM, UM and ETG growth rate spectrum exhibits no scale separation 
• Ion scale simulations with UM saturate near experimental levels

• Electron scale simulations with ETG only saturate with an artificial low ky cut-off

• Preliminary multiscale simulations were attempted 
• Full ion scale needs to be captured for saturation

• Likely need full electron scale to get a converged result

• Impact of MTM not yet determined…

• Further work examining these is needed

• Future work will make direct comparisons to the DBS systems via synthetic 
diagnostics 

Conclusions
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